MODEL OF THE TRANSPORT PROBLEM IN THE CASE OF CARGO DELIVERY BY TWO DIFFERENT TYPES OF VEHICLES

https://doi.org/10.33815/2313-4763.2025.2.31.178-186

Keywords: transport problem, interaction of transport modes, potential method, multimodal transportation, freight transportation, optimal delivery plan

Abstract

The article considers the features of modeling the transport problem in the case when the cargo can be delivered by two different types of vehicles. The classical transport model does not take into account the variability of transportation costs by type of transport, which requires the construction of special mathematical models and methods for reducing them to a standard form. The aim of the work is to construct special types of models of the transport problem in the case of cargo delivery by the number of types of vehicles, more than two, and to propose algorithms for solving such transport problems by reducing them using appropriate procedures to the classical model. Three approaches to the formalization of multimodal transportation have been developed. The first approach is based on the sequential transportation of cargo by both types of transport, which involves the formation of a final cost matrix as the sum of the corresponding elements of a three-dimensional matrix. The second approach involves the choice of the type of transport that provides the lowest delivery cost for each individual “supplier–consumer” connection. The third approach is based on the introduction of a probability matrix or partial cargo shares, which determine what part of the cargo should be transported by each mode of transport. For each of the models, procedures are proposed for reducing the three-dimensional cost structure to a two-dimensional form, which allows the application of the potential method to find the optimal transportation plan. The numerical examples presented confirm the correctness and practical applicability of the proposed models. The results obtained can be used to optimize logistics schemes, manage multimodal transportation, and also to develop software tools to support decision-making in transport systems.

References

1. Volynets, L. M. (2018). Kontseptualni aspekty formuvannya multymodalnykh perevezen v umovakh hlobalizatsiyi. Ekonomika ta upravlinnya na transporti. № 7. P. 121–132. http://nbuv.gov.ua/UJRN/eut_2018_7_16.
2. Kyrychenko, H. I., Strelko, O. H., Berdnychenko, Yu. A., Petrykovets, O. V., Pavlyuk, Ye. I. (2019). Suchasni tendentsiyi rozvytku multymodalʹnoyi systemy perevezennya vantsiv. Vcheni zapysky TNU imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky. № 3. P. 148–153. https://doi.org/10.32838/2663-5941/2019.3-2/26.
3. Slavych, V. P. ta in. (2024). Teoretyko-metodychni zasady vykorystannya tsyfrovykh tekhnolohiy v Ukrayini shlyakhom vprovadzhennya dosvidu YES. Pidvyshchennya ekonomichnoyi efektyvnosti transportnykh pidpryyemstv cherez tsyfrovizatsiyu protsesu dostavky vantazhu riznymy vydamy transportu: kolektyvna monohrafiya. Zaporizhzhya: 246 p. ISBN 978-617-8064-49-5. https://doi.org/10.5281/zenodo.14258681.
4. Claudia Archetti, Lorenzo Peirano, M. Grazia Speranz. (2022). Optimization in multimodal freight transportation problems: A Survey. European Journal of Operational Research.Vol. 299, Issue 1. P. 1–20. https://doi.org/10.1016/j.ejor.2021.07.031.
5. Slavych, V. P., Dobrova, K. D. (2020). Modelʹ ta metod znakhodzhennya opornoho ta optimalʹnykh planiv modифikovanoї transportnoyi zadachi u vypadku hrupuvannya postachalʹnykiv vantazhu. Prykladni pytannya matematychnogo modelyuvannya. № 1. P. 187–193. https://doi.org/10.32782/2618-0340/2020.1-3.19.
6. Slavych, V. P., Yelʹnyk, V. V. (2023). Optymizatsiya protsesu dostavky vantazhu hazopostachalʹnoho pidpryyemstva. Visnyk KhNTU. № 2 (85). P. 84–89. https://doi.org/10.35546/kntu2078-4481.2023.2.11.
7. Aicha Ferjani, Amina El Yaagoubi, Jaouad Boukachour, Claude Duvallet. (2024). An optimization-simulation approach for synchromodal freight transportation. Multimodal Transportation. Vol. 3, Issue 3. 100151. https://doi.org/10.1016/j.multra.2024.100151.
8. Jonas Hatzenbühler, Erik Jenelius, Győző Gidófalvi, Oded Cats. (2023). Modular Vehicle Routing for Combined Passenger and Freight Transport. Transportation Research Part A: Policy and Practice. Vol. 173, 103688. https://doi.org/10.1016/j.tra.2023.103688.
9. Zhang, Y., Guo, W., Negenborn, R. R., Atasoy, B. (2022). Synchromodal transport planning with flexible services: mathematical model and heuristic algorithm. Transportation Research Part C: Emerging Technol. Vol.140. 103711. https://doi.org/10.1016/j.trc.2022.103711.
10. Danchuk, V., Comi, A., Weiß, C., & Svatko, V. (2023). The optimization of cargo delivery processes with dynamic route updates in smart logistics. Eastern-European Journal of Enterprise Technologies. Vol. 2, No. 3 (122). P. 64–73. https://doi.org/10.15587/1729-4061.2023.277583.
11. Zhang, T., Cheng, J., Zou, Y. (2024). Multimodal transportation routing optimization based on multi-objective Q-learning under time uncertainty. Complex Intell. Syst. Vol. 10. P. 3133–3152. https://doi.org/10.1007/s40747-023-01308-9.
12. Kadem, K., Ameli, M., Zargayouna, M., & Oukhellou, L. (2024). Multimodal urban transportation network equilibrium including intermodality and shared mobility services. arXiv preprint arXiv. 2402.00735. https://doi.org/10.48550/arXiv.2402.00735.
13. Liu, S. (2023). Multimodal Transportation Route Optimization of Cold Chain Container in Time-Varying Network Considering Carbon Emissions. Sustainability. 15, 4435. https://doi.org/10.3390/su15054435.
14. Liu, Z., Zhou, S., Liu, S. (2025). Optimization of Multimodal Transport Paths Considering a Low-Carbon Economy Under Uncertain Demand. Algorithms. Vol. 18, no. 2. 92. https://doi.org/10.3390/a18020092.
15. Pérez-Lechuga, G., Martínez-Sánchez, J. F., Venegas-Martínez, F., Madrid-Fernández, K.N. (2024). A Routing Model for the Distribution of Perishable Food in a Green Cold Chain. Mathematics. 12, 332. https://doi.org/10.3390/math12020332.
16. Ren, X., Pan, S., Zheng, G. (2025). Robust Optimization of Multimodal Transportation Route Selection Based on Multiple Uncertainties from the Perspective of Sustainable Transportation. Sustainability. Vol. 17, Issue 12. 5508. https://doi.org/10.3390/su17125508.
Published
2026-01-23