SCHEMATIC SOLUTIONS IN RENOVATION OF TEST

https://doi.org/10.33815/2313-4763.2024.1.28.093-103

Keywords: resistance of materials, testing machines, material samples, means of measurement, renovation, modernization, economic feasibility, computer and engineering graphics

Abstract

The article briefly examines the construction process as an activity of creating a material image of an object, which is developed in the form of a full-scale model and its graphic representation: drawings, computer models.

The article considers the main ways of ensuring strength: empirical; experimental, which includes planning and certain amount of calculations, and calculation, in which the empirical component is minimized due to the appropriate theoretical apparatus, and with the development of science and technology, its role increases.

It is noted that when calculating strength, it is necessary to solve the following problems consistently and in mutual agreement: the problem of external forces; the stress determination problem and the allowable stress problem.

Solving the problem of calculating the stress-strain state requires knowledge of the mechanical constants of the construction material, and the normalization of stresses - its strength characteristics.

The main content of the article includes the presentation of some methods and means of measurement developed in the laboratory of polymer composite materials of the Kherson State Maritime Academy to ensure research work on the creation of composite materials for shipbuilding with increased operational characteristics.

These studies include experimental determination of physical and mechanical properties of the materials being created, which requires special testing equipment. This task was largely solved by the laboratory team by renovating the existing equipment, automating its operation and analyzing information using computer and engineering graphics, as well as developing new methods and means of measurement. Technological designs of samples and methods of determining the mechanical constants of polycrystalline and composite materials are proposed.

The developed technical solutions are protected by patents, the implementation of which provided a significant positive effect.

References

1. Aleksenko, V. L., Smetankin, S. O., Fostyk, P. P., Buketov, O. A. (2022). Chyselʹnyy rozrakhunok napruzheno-deformovanoho stanu kompozytnykh materialiv z urakhuvannyam fizychnoyi ta heometrychnoyi neliniynosti Problemy tertya ta znoshuvannya, Kyiv [in Ukrainian].
2. Entsyklopedychnyy slovnyk, F. A. Brok·hauza, ta I. A. Yefrona. Mashyny dlya doslidzhennya oporu materialiv. URL: https://dic.academic.ru/dic.nsf/brokgauz_efron /140987/%D0%A1%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 (data zvernennya: 15.04.2024).
3. Universalʹnistʹ vyprobuvalʹnykh mashyn. URL: https://www.globaltest.uz/news/ stati/universalnost-universalnykh-ispytatelnykh-mashin-uim/ (data zvernennya: 15.04.2024).
4. Aleksenko, V. L., Buketov, A. V., Braylo, N. V., Beloshytskyy, S. A. (2014). Kompensatsiya systematychnoyi pomylky pid chas obrobky rezulʹtativ vyprobuvanʹ konstruktsiynykh materialiv. Kherson [in Ukrainian].
5. Nove zhyttya vyprobuvalʹnoho obladnannya. Kapitalʹnyy remont ta modernizatsiya. URL: https://ukrintech.com.ua/ru/novaya-zhizn-ispytatelnogo-oborudovaniya-kapitalnyj-remont-i-moder-nizatsiya (data zvernennya: 15.04.2024).
6. Modernizatsiya R/M usikh typiv. URL: http://asma.com.ua/content/razryvnye-mashiny/modernizatsiya-r-m-vsekh-tipov (data zvernennya: 15.04.2024).
7. Successful modernization of materials testing machines. URL: https: //pdf.directindustry.com/pdf/zwickroell-gmbh-co-kg/successful-modernization-materials-testing-machines/15660-343231.html (data zvernennya: 15.04.2024).
8. Modernization of materials testing machines. URL: https://www.studocu.com/es-ar/document/universidad-nacional-de-rio-cuarto/plastica/99-269-testing-of-plastics-and-rubber-e-en/29883021 (data zvernennya: 15.04.2024).
9. Podnebennaya, S. K., Burlaka, V. V., Gulakov, S. V., & Kysliak, V. G. (2018). Modernizatsiya rozryvnoyi mashyny 2167R-50 dlya doslidzhennya mitsnosti zvarnykh zʺyednanʹ. Dnipro [in Ukrainian].
10. Tenzodatchyk SP5 konsolʹnyy 50 ~ 300Kg. URL: https://kobastar.com/ru/product-details/%d1%82%d0%b5%d0%bd%d0%b7%d0%be%d0%b4%d0%b0%d1%82%d1%87%d0%b8%d0%ba-sp5-%d0%ba%d0%be%d0%bd%d1%81%d0%be%d0%bb%d1%8c%d0%bd%d1%8b% d0%b9/ (data zvernennya: 15.04.2024).
11. ClockwiseTools DITR-0105 https://clockwisetools.com/products/clockwise-tools-ditr-0015-digital-indicator-0-0-5-12-7mm-resolution-0-00005 (data zvernennya: 15.04.2024).
12. Uzhodzhennya lohichnykh rivniv syhnaliv YCHT i MK. https://www. rlocman.ru/shem/schematics.html?di=599237 (data zvernennya: 15.04.2024).
13. Krokovyy dvyhun NEMA 17 z planetarnym reduktorom 139. URL: https://stack.in.ua/ua/p1537978113-shagovyj-dvigatel-nema.html (data zvernennya: 15.04.2024).
14. Buketov, A., Smetankin, S., Maruschak, P., Yurenin, K., Sapronov, O., Matvyeyev, V., Menou, A. (2020). New black-filled epoxy coatings for repairing surface of equipment of marine ships. Transport. Vol. 35. № 6. 679-690. doi.org/10.3846/transport.2020.14286.
15. Buketov, A. V., Husiev, V. M., Kulinich, A. G., Yakushchenko, S. V., Smetankin, S. O., Sotsenko, V. V., Yurenin, K. Yu. (2021). Epoxy Nanocomposites with Increased Hydroabrasive Wear Resistance for Use in Vehicles. Journal of nano- and electronic physics. Vol. 13. No. 5. pp. 05026-1–05026-5. DOI: https://doi.org/10.21272/jnep.13(5).05026.
16. Zatysknyy prystriy, shcho samotsentruyetʹsya, dlya vyprobuvannya zrazkiv materialiv na roztyah: pat. 143840 Ukrayina: MPK G01N 3/00, G01N 3/08. № 2020 02002; zayav. 23.03.2020; opubl. 10.08.2020, Byul. № 15.
17. Prystriy dlya vyprobuvannya konstruktsiynykh materialiv na roztyah: pat. 141344 Ukrayina: MPK G01N 3/08, G01N 3/10, G01N 3/32. № 2019 07669; zayav. 08.07.2019; opubl. 10.04.2020, Byul. № 7.
18. Zrazok dlya vyprobuvannya kompozytnykh materialiv na roztyah: pat. 144176 Ukrayina: MPK G01N 3/08, № 2020 01975; zayav. 23.03.2020; opubl. 10.09.2020, Byul. № 17.
19. Buketov, A., Smetankin, S., Maruschak, P., Yurenin, K., Sapronov, O., Matvyeyev, V., Menou, A. (2020). New black-filled epoxy coatings for repairing surface of equipment of marine ships. Transport. Vol. 35. № 6. 679-690. doi.org/10.3846/transport.2020.14286.
20. Buketov, A. V., Husiev, V. M., Kulinich, A. G., Yakushchenko, S. V., Smetankin, S. O., Sotsenko, V. V., Yurenin, K. Yu. (2021). Epoxy Nanocomposites with Increased Hydroabrasive Wear Resistance for Use in Vehicles. Journal of nano- and electronic physics. Vol. 13. No. 5. pp. 05026-1–05026-5. DOI: https://doi.org/10.21272/jnep.13(5).05026.
21. Buketov, A., Smetankin, S., Yakushchenko, S., Yurenin, K., Sotsenko, V., Brailo, M., Kulinich, V., Sapronov, O., Kulinich, A., Vrublevskyi, R. & Bezbakh, O. (2021). Physical/mechanical properties of epoxy composites filled with carbon black nano-dispersed powder for protection of transport vehicles. Composites: Mechanics, Computations, Applications: An International Journal. 2021. Vol. 12 no 2. pp. 1–12. 10.1615/CompMechComput ApplIntJ.2021037544.
Published
2024-07-29