HYSTERESIS REGIMES OF FLAMELESS COMBUSTION GAS MIXTURE

  • V. V. Kalinchak Odesa National University named after I. I. Mechnikov
  • A. S. Chernenko Odesa National University named after I. I. Mechnikov
  • A. N. Sofronkov Odessa State Ecological University, Odessa
  • S. E. Selivanov Kherson State Maritime Academy, Kherson
  • A. V. Fedorenko Odesa National University named after I. I. Mechnikov
Keywords: particle, metal oxidation catalyst, ammonia, parallel reactions, hysteresis, heat-mass exchange, self-ignition, extinction, surface (flameless) burning

Abstract

Mechanisms of hysteresis heat and mass transfer and flameless combustion gas-air mixtures with combustible gas admixture on metal catalyst particles and wires are studied. It is assumed that ammonia is oxidized on platinum small diameter particles and wires with a parallel formation of nitrogen and nitrous oxide. Dependences stationary platinum particle temperature (wire) and heat release rate of the gas mixture temperature and ammonia concentration were studied. The temperature of the flameless combustion and the total heat release rate increases linearly with increasing concentration of flammable gas, when it is more concentration of extinction. Degeneration of the hysteresis loop at a fixed temperature dependence on the catalyst particle-gas mixture temperature occurs when the concentration admixture of flammable gas reduced. Catalytic ignition occurs in the kinetic mode (diffusion-kinetic ratio of less than one), the extinction in the transition region (diffusion-kinetic ratio greater than one). The admixture concentration must be greater than the concentration of degeneracy. When reducing the concentration of flammable gas diffusion-kinetic ratio increases when ignition, decreases with extinction and approaches unity when there is a degeneration of the hysteresis field.

References

1. Frank-Kameneckiyj D. A. (1987). Diffuziya i teploperedacha v khimicheskoyj kinetike. M. : Nauka.
2. Barelko V. V., Volodin Yu. E. (1973). Kriticheskie yavleniya neteplovoyj prirodih v reakcii okisleniya ammiaka na platine. Dokladih AN SSSR, T. 211, 6, 1373–1376.
3. Kipnis M. A., Volnina Eh. A. (2010). Selektivnoe okislenie SO na Pt- i Rh-katalizatorakh v usloviyakh prochnoyj adsorbcii SO. Kinetika i kataliz, 51, 2, 295–304.
4. Kalugin V. V., Kalinchak V. V., Chernenko A. S. (2015). Vihsokotemperaturnoe okislenie ammiaka na platinovom katalizatore pri paralleljnom obrazovanii azotsoderzhathikh produktov. Kinetika i kataliz, T. 56, 3, 333–341.
5. Kalinchak V. V., Chernenko A. S., Kalugin V. V., Sofronkov A. N. (2014). Gisterezis teplomassoobmena pri neizotermicheskom okislenii primeseyj goryuchikh gazov v vozdukhe na platinovoyj provoloke. Fizika aehrodispersnihkh system, 51. Odessa, 41–52.
6. Ilchenko N. I., Golodets G. J. (1975). Catalytic oxidation of ammonia. I. Reaction kinetics and mechanism. J. Catal, V. 39, 11, 57–72.
7. Kalinchak V. V., Chernenko A. S., Kalugin V. V. (2014). Vliyanie razmera chasticih katalizatora na kriticheskie usloviya kataliticheskogo okisleniya gazov. Inzhenerno-fizicheskiyj zhurnal, V. 87, 2. Novosibirsk, 317–324.
8. Kalinchak V. V. (2014). Kataliticheskoe gorenie malihkh soderzhaniyj goryuchikh gazov na metallicheskikh chasticakh. Materіali mіzhnarodnoї naukovo-praktichnoї konferencії «Bezpeka zhittєdіyaljnostі na transportі ta virobnictvі – Osvіta, nauka, praktika». Kherson : KhDMA,230–232.
9. Tomskiyj I. S., Vishnevskaya M. V., Kokorin A. I. (2008). Parcialjnoe kataliticheskoe okislenie toluola na oksidakh vanadiya i molibdena. Khimicheskaya fizika,V. 27, 7, 66–71.
Published
2016-07-23