HYBRID PARADIGM OF MAGNETICALLY LEVITATED TRAIN’S TRACTION FORCE’S MODELING

  • V. A. Polyakov Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, Dnipro
  • N. M. Khachapuridze Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, Dnipro
Keywords: magnetically levitated train, linear synchronous motor, traction realization, hybrid holistic research paradigm

Abstract

Magnetically levitated train’s (MLT) motor’s traction force realization (TFR) occurs in the process of electromechanical energy transformation by inductor’s and armature’s magnetic fields interaction. Accordingly, the aim of this study is to obtain a correct description of such energy transformation. At the present stage, a mathematical and, in particular, computer simulation is the main and most universal tool of processes and system’s analysis and synthesis. At the same time, a radical advantage of this tool makes it even more important precision selecting a particular methodology of the study. Especially important it is for such a large and complex system, which is an MLT. Therefore the special attention in the work is given to the reasoned choice and substantiation of research paradigm’s selective features. The results of analysis of existing versions of TFR process model indicate that each of these versions possesses both advantages and disadvantages. Therefore, one of the main results of this study should be the creation of a mentioned process’s mathematical model’s new version. The created version of the model should preserve the advantages of previous versions, but to be free of their disadvantages. The rationality of application, for the purposes of motor’s TFR process research, of the hybrid holistic modeling paradigm was convincingly proved in the work. The priority of creation of such paradigm and corresponding version of the TFR process model constitute the scientific novelty of research. The main manifestation of practical value of this research in the opportunity, in case of use of its results, of a significant increasing of efficiency of MLT’s dynamic investigations, on the condition that their generalized costs will not increase.

References

1. Dzenzerskij V. A., Omel’janenko V. I., Vasil’ev S. V., V. I. Matin V. I., Sergee S. A. Vysokoskorostnoj magnitnyj transport s jelektrodinamicheskoj levitaciej [High-speed magnetic levitation transport with electrodynamic levitation]. Kiev, Naukova dumka Publ., 2001. 479 p.
2. Vol’dek A.I. Jelektricheskie mashiny [Electric machines]. Leningrad, Jenergija Publ., 1984. 832 p.
3. Poljakov V. A., Hachapuridze N. M. Visnyk Kharkivsjkogho nacionaljnogho universytetu imeni V. N. Karazina. Serija «Matematychne modeljuvannja. Informacijni tekhnologhiji. Avtomatyzovani systemy upravlinnja» – Journal of University of Kharkiv. The series «Mathematical modeling. Information Technology. Automated control systems». 2012, vol. 19, no. 1015, pp. 268 - 273.
4. Poljakov V. A., Hachapuridze N. M. Naukovyj visnyk Khersonsjkoji morsjkoji akademiji – Scientific Bulletin of Kherson Maritime Academy. 2013, no. 1 (8), pp. 258 – 266.
5. Sipajlov G. A, Kononenko E. V., Hor’kov K. A. Jelektricheskie mashiny (special’nyj kurs) [Electric machines (special course)]. Moscow, Vysshaja shkola Publ., 1987. 287 p.
6. Kopylov I. P. Matematicheskoe modelirovanie jelektricheskih mashin [Mathematical modeling of electrical machines]. Moscow, Vysshaja shkola Publ., 2001. 327 p.
7. Bessonov L.A. Teoreticheskie osnovy jelektrotehniki: Jelektricheskie cepi [Theoretical Foundations of Electrical Engineering: Electrical circuits]. Moscow, Vysshaja shkola Publ., 1996. 578 p.
8. L’vovich A. Ju. Jelektromehanicheskie sistemy [Electromechanical systems]. Leningrad, LSU Publ., 1989. 296 p.
9. Kron G. Primenenie tenzornogo analiza v jelektrotehnike [The use of tensor analysis in electrical engineering]. Moscow, Leningrad, Gostehizdat Publ., 1955. 275 p.
10. Rashevskij P. K. Rimanova geometrija i tenzornyj analiz [Riemann geometry and tensor analysis]. Moscow, Nauka Publ., 1967. 644 p.
11. Birjukov V. A., V. A. Danilov V. A. Zhurnal tehnicheskoj fiziki – Technical Physics 1961, vol. XXXI, no. 4, pp. 428 - 435.
12. Azukizava T. IEEE Trans. On Power Apparatus and Systems. 1983, – vol. Pas-102, no. 10, pp. 3306 - 3314.
13. Fujiwara S. SAE Technical Paper Series. 1995. SAE 95-1922, pp. 1 - 6.
14. Lakhavani S. T., Davson G. E. 34th Vehicular Technol. Conf. Pittsburg, 1984, pp. 220 - 225.
15. Matsuoka K. Proc. IPEC. Tokyo, 1990, vol. 1, pp. 604 – 611.
16. Wang, Xudong, Yuan, Shiying, Wang, Zhaoan. Transacti. of China Electrotechn. 2006, Soc., vol. 21, no. 6, , pp. 59-64.
Published
2017-01-27