CONTROL METHODS OF VESSEL’S THRUSTER AT CHANGING OPERATING CONDITIONS
https://doi.org/10.33815/2313-4763.2019.1.20.097-108
Abstract
It has been substantiated that in order to improve the operational characteristics of the vessel thrusters, it is necessary to use the torque and power control. It has been shown that torque and power control are feasible solutions for high-performance thruster control only if special precautions are taken during extreme environmental conditions, when the propeller may be subject to ventilation and in-and-out-of water effects. Therefore, an anti-spin thruster controller has been designed.
The results have showed that the torque and power controllers with anti-spin have comparable performance to that of a well-tuned shaft speed PI controller during ventilation, without compromising the superior performance of torque and power control in normal conditions
References
Smogeli, O. N. & A. J. Sørensen. (2009). Antispin Thruster Control for Ships. IEEE Transaction on Control System Technology, Vol. 17, No. 6, 1362–1375.
Hespanha, J. P. (2001). Tutorial on Supervisory Control. Lecture Notes for the Workshop Control using Logic and Switching for the Conference on Decision and Control, Orlando, Florida, US.
Haskara, ˙I., Özgüner, Ü. & Winkelman, J. (2000). Wheel slip control for antispin acceleration via dynamic spark advance. Control Engineering Practice, 8.
Johansen, T. A., Kalkkuhl, J. & Petersen, I. (2001). Hybrid Control Strategies in ABS. In. Proc. of American Control Conference (ACC’01). Arlington, VA, USA.
Doschenko G.G. (2018). Microcontroller ship system of energy saving Еnergy Saving. Adaptation of Science, Education and Business to World Innovative Megatrends : International collective monograph. Science and Innovation Center, Ltd. St. Louis. Missouri, Thessaloniki. 129–134. DOI:10.6084/m9.figshare.7814393.v1.
Nahovskyi D. A. (2018). Construction features and necessity of pre-testing DP-systems. Adaptation of Science, Education and Business to World Innovative Megatrends : International collective monograph. Science and Innovation Center, Ltd. St. Louis. Missouri, Thessaloniki. 124–129. DOI:10.6084/m9.figshare.7814393.v1.
Stephens, R. I., Burnham, K. J. & Reeve, P. J. (1995). A practical Approach to the Design of Fuzzyy Controllers with Application to Dynamic Ship Positioning. In Proc. of IFAC Conference on Control Applications in Marine Systems, Trondheim, Norway.
Tannuri, E. A., Agostinho, A. C., Morishita H. M. & and Moratelli Jr. (2010). Dynamic Positioning Systems: An Experimental Analysis of Sliding Mode Control. Control Engineering Practice, CEP 18-10, 1121–1132.
Sorensen, A. J. & Smogeli O. N. (2009). Torque and Power Control of Electrically Driven Marine Propellers. Control Engineering Practice, CEP 17-9, 1053–1064.
Perez, T. & Donaire, A. (2009). Constrained Control Design for Dynamic Positioning of Marine Vehicles with Control Allocation Modelling Identification and Control, MIC 30-2,
57–70.
Chernihkh I. V. SimPowerSystems: Modelirovanie ehlektrotekhnicheskikh ustroyjstv i sistem v Simulink. Retrieved from: https://docs.exponenta.ru/physmod/sps/index.html.
Timchenko, V. L. & Ukhin O. A. (2014). Robastno-optimaljnaya stabilizaciya morskikh podvizhnihkh objhektov v rezhime dinamicheskogo pozicionirovaniya. Ehlektrotekhnicheskie i kompjyuternihe sistemih, 13 (89). Kyev : Tekhnika. 19–26.
Grigorjev, A.V., Vasin I. M. & Khomyak V. A. (2008). Komlpeksnihyj podkhod pri sozdanii sudnovihkh ehnergeticheskikh sistem i ustanovok. Sudostroenie, 2, 30–31.
Grigorjev, A. V. & Glekler E. A. (2008). Perspektivnaya sudovaya edinaya ehlektroehnergeticheskaya ustanovka. Ehkspluataciya morskogo transporta: ezhekvart. sb. nauch. st., 3 (53). Sanct-Peterburg : Feniks. 68–70.