THE WAY TO INCREASE THE PERFORMANCE OF INTEGRATED NAVIGATION SYSTEM DUE TO ECONOMIC METHOD OF FINDING THE MATRIX INVERSE

  • S. І. Іlnitska Національний авіаційний університет м. Київ
Keywords: integrated navigation system, a method of rotating triangular matrices

Abstract

Despite the large number of publications devoted to integrated navigation systems and methods of finding the matrice inverse, little attention is paid to the technical aspects of the issue of such systems performance. The main goal of this work is to study the possibilities of improving the performance of calculations in an integrated navigation system using improved procedures for finding the inverse of triangular matrices. As a result of the practical realization of Gauss, Gauss-Jordan method and the proposed method of finding the inverse of triangular matrices as functions programmed in Code Warrior on a microprocessor from Freescale Kinetis K-60 series, it has been determined that the order of accuracy is approximately the same for all methods, but the performance of the proposed method gives the gain at about 70 -80% compared with the classical methods of Gauss and Gauss-Jordan respectively. These results can also be used for programming algorithms of integrated navigation systems in a concrete hardware. In particular, in our case it has been decided to choose the proposed method of finding the inverse of triangular matrices.

References

Конин В. В. Системы спутниковой радионавигации / В. В. Конин, В. П. Харченко; Национальный авиационный университет. – К. : Холтех, 2010. – 520 с.

Hofmann-Wellenhof B. GNSS – Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and more // B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle – Springer-Verlag Wien, 2008. – 516 p.

Grewall M. S. Global Positioning Systems, Inertial Navigation, and Integration / M. S. Grewall, L. P. Weill, A. P. Andrews. – A John Wiley & Sons, Inc. Publ., New York, Chichester, Brisbane, Singapore, Toronto. – 2001. – 392 p.

George M. Siouris. Aerospace Avionics Systems: a modern synthesis. – Academic Press, Inc., 2007. – 466 p.

Kharchenko V. Multipurpose Remotely Piloted Aircraft System Integrated Navigation System Development and Testing / V. Kharchenko, S. Ilnytska // Logistic and Transport Journal. – V. 19, № 3, 3013. – pp. 85-90.

Coopmans C. AGGIEAIR: An Integrated and Effective Small Multi-UAV Command, Control and Data Collection Architecture / C. Coopmans, Y. Han // Proceedings of the ASME IDETC/CIE, 2009. – pp. 1-7.

Krishnamoorthy A. Matrix Inversion Using Cholesky Decomposition / A. Krishnamoorthy, D. Menon // Proceedings of the IEEE Conference «Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)», 26-28 Sept. 2013. – pp. 70-72.

Soleymani F. A Rapid Numerical Algorithm to Compute Matrix Inversion / Soleymani F. // International Journal of Mathematics and Mathematical Sciences, vol. 2012, Article ID 134653, 2012. –11 pages. – doi:10.1155/2012/134653

Bertsekas D. P., Tsitsiklis J. N. Paralel and Distibuted Computation: Numerical Methods. – Athena Scientific, 1997. – 718 p.

Стренг Г. Линейная алгебра и ее применения / Г. Стренг. – М. : Мир, 1980. – 460 с.

Белоусов И. В. Матрицы и определители: учебное пособие по линейной алгебре / И. В. Белоусов. – Кишинев, 2006. – 101 с.

Larin V. B. Attitude-Determination Problems for a Rigid Body // Int. Appl. Mech. – 2001.– 37. – №7. – pp. 870-898.

Ларин В. Б. О корректировании работы системы инерциальной навигации / В. Б. Ларин, А. А. Туник // Проблемы управления и информатики. – 2010. – № 4. – С. 130-142.

Freescale Kinetis K60 Sub-Family Reference Manual, Rev. 2, Dec 2011. – 2075 p.

Published
2014-12-26