
Науковий вісник Херсонської державної морської академії  № 2 (31), 2025 

ISSN-print 2313-4763; ISSN-online 3041-1939  
дд 

199    

УДК 656.61 

 

ДИНАМІЧНА МОДЕЛЬ РОЗРАХУНКУ  

РІВНЯ ВТОМИ ШТУРМАНА – PREDICTIVE FATIGUE INDEX   
 

Петровський А. В., к.т.н., доцент кафедри судноводіння Херсонської державної       

морської академії, м. Херсон, Україна, e-mail: andreyanybody@gmail.com,              

ORCID: 0000-0002-3337-9577. 
 

У роботі розглядаються проблеми оцінки людського фактора у судноводінні з особливим акцентом на 

втомі та когнітивному навантаженні судноводія під час роботи з ECDIS. Проведено аналіз сучасних 

підходів і математичних моделей  із визначенням їх переваг і недоліків щодо прогнозування помилок 

оператора. Запропоновано модель інтегрального показника: PFI (Psychophysical Fatigue Index) для 

кількісної оцінки фізіологічної втоми з урахуванням когнітивного навантаження від фізіологічних, 

операційних і контекстних факторів. Модель передбачає динамічне корегування вагових коефіцієнтів 

на основі машинного навчання та інтегрує контекстні параметри, такі як: погода, трафік і час доби. 

Модель працює у двох режимах: операційному та стаціонарному. Показано можливість інтеграції 

моделі у навігаційні системи та тренажери для раннього виявлення підвищеної втоми та 

перевантаження. Запропонована модель дозволяє підвищити точність прогнозування ризику помилок, 

оптимізувати планування вахт і сприяти підвищенню безпеки морських навігаційних операцій. Надано 

порівняльний аналіз можливостей існуючих моделей та запропонованої. Розглянуті перспективи 

подальших досліджень, що включають адаптивну індивідуалізацію моделей і інтеграцію 

багатовимірних даних для комплексної оцінки стану судноводія.  

Ключові слова: ECDIS; людський фактор; людська втома; Predictive Fatigue Index; Exponential Moving 

Average. 
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Вступ. Все більш розвинуті системи автоматизації керування / навігації для 

судноводіїв надають не тільки безпеку судноплавства, але й вимоги до ступеня професійної 

освіти для їх коректного використання. Останні дослідження випадків аварій на морі з    

2015–2025 роки [1] свідчать про шалений відсоток людського фактора як причину таких 

подій (рис. 1).  

 
Рисунок 1 – Відсоток інцидентів, упорядкований за типами аварій суден [1, Figure 2.7-1] 

 

Достатньо велика кількість дослідників використовує різні моделі врахування 

людського фактора саме при керуванні судном, але прийняття рішення судноводієм повинно 

базуватися ще й на оцінці навігаційної обстановки, яка повністю відображається на екрані 

ECDIS. ECDIS є навігаційною частиною системи управління рухом судна, оскільки це 

інтегрована навігаційна система, яка включає векторні карти, AIS, радар, GPS  та інші 
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пристрої / датчики, карти прогнозу погоди у векторному форматі, інформацію про глибину 

та небезпеки. Судноводій постійно приймає рішення на основі інформації у тому числі з 

ECDIS. Вона є інтерфейсом, через який проявляються помилки штурмана, наприклад, 

неправильна інтерпретація інформації або несвоєчасне реагування на повідомлення ECDIS. 

Тому можна сказати, що моделі поведінки судноводія та людський фактор (у тому числі і 

втома, вплив стресу, недостатність досвіду) прямо впливають на ефективність використання 

ECDIS. 

Постановка задачі. Етапи, на яких можливе використання моделей врахування 

людського фактора при роботі з ECDIS: 

1. Отримання інформації з ECDIS. Штурман отримує дані про маршрут, глибини, 

небезпечні об’єкти, AIS / ARPA-помітки, тривоги / попередження / застереження. Можлива 

присутність: навантаження на увагу, когнітивні обмеження, стрес, втома. За допомогою 

біодатчиків є можливість зробити оцінку стану людини. 

2. Обробка та інтерпретація інформації. Судноводій оцінює ситуацію і визначає 

ризики, обирає маневр або зміну маршруту. Суть прояву людського фактора – можуть 

існувати: помилки оцінки ситуації, пропуск повідомлень від ECDIS, неправильна 

інтерпретація повідомлень. На допомогу можуть прийти експертні системи. 

3. Прийняття рішення. На основі аналізу інформації оператор обирає конкретну дію: 

коригування курсу, швидкості, зміна маршруту, сигналізація екіпажу, ін. Моделі 

«випередження / прогнозування» і машинного навчання (ML) можуть прогнозувати 

ймовірність правильного або ризикового рішення на основі попередніх дій. 

4. Виконання дії через ECDIS або керування судном. Дія оператора реєструється: 

зміни маршруту, підтвердження повідомлень, налаштування автоматичних систем. Система 

ECDIS здійснює запис у LogBook в автоматичному режимі поточних даних інтегрованих 

джерел отримання інформації, які потім можна використати для аналізу. 

5. Моніторинг та зворотній зв’язок. ECDIS (і додаткові системи безпеки) може 

генерувати тривоги, якщо присутні ризики розходження або навігаційні ризики. Моделі 

дозволяють оцінити людський фактор, як штурман реагує на повідомлення: швидко, 

повільно, неправильно. 

6. Аналіз та вдосконалення. Лог-записи ECDIS та поведінкові дані штурмана можуть 

бути використані для навчання екіпажу на тренажерах, вдосконалення інтерфейсу ECDIS, 

побудови адаптивних систем попередження.  

Математичні моделі / ML / ШІ підходи в принципі можуть: аналізувати лог-записи в ECDIS, 

виявляти типові помилки чи “зони ризику” (наприклад, часті пропуски повідомлень, 

непророблені маршрути переходів), пропонувати адаптивні рекомендації чи попередження 

на основі поведінки конкретного оператора.  
 

Таблиця 1 – Приклади інтеграції 

Модель / Підхід Зв’язок з ECDIS 

Формальні p-адичні моделі 

реакцій 

Аналіз реакцій оператора на виникаючі повідомлення, зміни 

маршруту, небезпечні об’єкти 

ML / Data Mining Прогнозування помилок при плануванні маршруту, ідентифікація 

повторюваних патернів поведінки 

Психофізіологічні сенсори Відстеження уваги та когнітивного навантаження під час роботи на 

ECDIS 

HMI (human–machine 

interaction)  / Ergonomic 

Research 

Вдосконалення інтерфейсу ECDIS, розташування інформації та 

сигналів 

Human Error / HFACS 

(Human Factors Analysis 

and Classification System) 

Класифікація типів помилок при використанні ECDIS, що привели до 

аварій 
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Всі моделі ідентифікації поведінки оператора можна напряму застосувати до аналізу 

дій на ECDIS: 

1. формальні + симуляційні моделі → прогноз реакцій; 

2. ML → аналіз логів ECDIS, виявлення ризиків; 

3. психофізіологічні → оцінка навантаження та уваги; 

4. організаційні / HMI → оптимізація інтерфейсу, запобігання втоми від тривог (alarm 

fatigue). 

Таким чином, дослідження людського фактора не повинно обмежуватися 

маневруванням судна, а подовжуватися й на навігацію з метою безпечної експлуатації 

ECDIS. 

Останні дослідження даного напряму суттєво просунулися в аналізі статистики 

використання зв’язки штурман-ECDIS. Автори [2] аналізують, чому втома моряків 

залишається значущою причиною морських аварій, попри розвиток технологій, 

автоматизацію та нормативні вимоги. Тобто навіть з сучасними системами (такими як 

ECDIS) втома залишається ризиком. Серед категорій людського фактора [3] існує 

«персональна особливість» (що може включати втому, вживання алкоголю), яка часто 

призводить до летальних випадків або серйозних аварій, яка показує – втома є однією з 

ключових передумов у серії реальних інцидентів. Дослідження [4] аналізують ймовірності 

помилок при використанні ECDIS і ризики, що виникають через недостатню підготовку / 

звикання користувачів. Це найконкретніші  дослідження, які пов’язують ECDIS-відмову / 

неправильне використання з людською помилкою. Стаття [5] звертає увагу на те, що ECDIS 

–  «соціо-технічна» система, і людська помилка (включно з неправильними діями оператора) 

має бути врахована при оцінці ризиків.  

Тобто, людський фактор + ECDIS ведуть до значущих ризиків, які вимагають 

врахування. Дослідження [6] показали, як фізіологічні / психологічні фактори (втома, стрес) 

впливають на безпеку при навігації. Тому,  якщо ECDIS є частиною містка, втома штурмана 

підвищує ризик, що інформація буде неправильно оброблена, попередження проігноровані 

тощо.  У роботі [7] вказані передумови такі як «loss of situation awareness» і «attention deficit», 

що часто є проявами втоми або перевтоми, особливо під час довгих вахт, нічних чергувань 

тощо. Це дає обґрунтування, що втома – не лише теоретичний ризик, а реальний фактор 

виникнення проблем, тобто у наявності послідовність: втома → людська помилка → ECDIS / 

навігаційні помилки. Публікації показують, що втома / людська помилка / «персональна 

особливість» – не просто теоретичні загрози: вони реально фігурують у сучасних 

статистиках інцидентів і аварій. Найсучасніші роботи, які досліджують ECDIS помилки (як 

от Bayes –  моделювання у 2024 році, SLIM – аналіз у 2022 році) – показують, що 

експлуатація ECDIS є ризикованою, якщо не враховувати людський чинник. У висновках [8] 

– втома / передумови (особиста готовність, втома, організаційні умови) часто виступають як 

приховані фактори, які через ряд подій / помилок призводять до аварії (наприклад, посадки 

на мілину). Дослідження демонструють, як втома може бути «прихованим» чинником – не 

безпосередньою дією, але прихованою умовою, що підвищує ризики та створює передумови 

для помилок. Навіть при наявності звітів часто немає достатньо даних, щоб сформулювати 

універсальну модель «human-operator + ECDIS + fatigue», Тому моделі «human factor + 

fatigue» варто інтегрувати в аналіз даних ECDIS / навігаційної безпеки як  «когнітивні / 

психофізіологічні + people in the loop (люди у циклі управління)».    

Актуальність досліджень. Сучасні підходи до моделювання впливу людського 

фактора можна розподілити на окремі напрямки: психосоціальні та організаційні підходи, 

формальні або алгоритмічні моделі поведінки штурмана, Data-driven або ML-підходи, 

командні або ергатичні системи та взаємодія людини і техніки, емпіричні дослідження або 

аналіз аварій та людські помилки. У дослідженнях [9] запропоновано систему ідентифікації 

негативних проявів «людської помилки» навігатора через поняття «суб’єктивної ентропії». 

Розглядаються первинні та вторинні фактори, що можуть призводити до підвищення ентропії 

(тобто до підвищеної ймовірності помилки). Однак, у наявності складність точного 



№ 2 (31), 2025 Транспортні технології 

 

 До рубрики включено статті за тематичною спрямованістю «Транспортні технології» 
 

202 

вимірювання «суб’єктивної ентропії», ймовірна залежність від контексту – конкретного 

екіпажу / судна / умов; можлива низька універсальність. У статті [10] надано 

формально-алгоритмічний підхід із перетворенням простору ознак дій оператора у 

логіко-геометричний простір p-адичних систем; на основі даних симулятора (дії, логи, відео) 

ідентифікуються реакції оператора в екстремальних навігаційних ситуаціях. Недоліками є: 

абстрактність p-адичного підходу, залежність від сценаріїв симулятора і невизначеність, 

наскільки такі моделі адекватні реальним умовам.  Дослідження [11] показують 

використання біометричних / психофізіологічних сенсорів для вимірювання когнітивного 

навантаження вахтового офіцера під час маневрів (наприклад, уникання зіткнення) у 

симуляторах. Вимірюються біометричні параметри, аналізуються пікові реакції під 

навантаженням. Однак, результати залежать від налаштувань симулятора, типу завдання, 

типу сенсорів; складно перенести на реальні судна; сенсори можуть бути інвазивними або 

заважати роботі. Фундаментальною оглядовою роботою є [12], що систематизує 

психолого-соціальні та організаційні аспекти людського фактора в морській безпеці. 

Пропонується поділ на три рівні: (1) – індивідуальні (когнітивні) чинники, (2) – cоціальні / 

міжособистісні, (3) – системні / організаційні (латентні помилки). У наявності опис 

теоретичної, концептуальної основи; допомагає розуміти, чому прості “технічні” моделі – 

недостатні; що є важливим для інтеграції психосоціальних аспектів у математичні / 

формальні моделі. Однак, це не математична модель, а оглядова і теоретична, яка потребує 

подальшої конкретизації, не дає алгоритмів, не гарантує формалізації. У [13] запропоновано 

гібридну методику, яка використовує психофізіологічні дані, наприклад, гемодинамічні 

зміни разом з машинним навчанням, щоб об’єктивно оцінити ефективність роботи штурмана. 

У методиці є розподіл моряків за кваліфікацією, але вона потребує спеціального обладнання 

(біосенсорів), є складності з організацією експериментів, також можлива чутливість до типу 

задач, навантажень і контексту. Тобто у наявності потреба у гібридних моделях, які б 

поєднували формальну / алгоритмічну частину + психофізіологічні дані + контекст (тип 

судна, команда, умови).   

Метою дослідження є визначення ролі когнітивних факторів, зокрема втоми, у 

виникненні морських інцидентів, а також створити та оцінити ефективність моделі 

інтегрального показника когнітивного навантаження (PFІ) для підвищення безпеки 

судноводіння. Об’єктом дослідження є процес навігаційного управління судном в умовах 

впливу людського фактора. Задачею дослідження є розробка формалізованої динамічної 

моделі, яка прогнозує рівень втоми судноводія на майбутній проміжок часу, враховуючи: 

поточний стан втоми, фізіологічні параметри (сон, час чергування), когнітивне навантаження 

на навігаційному містку (через  ECDIS), операційні умови (погода, трафік, нічні години), 

історичні дані оператора та ML-корекцію. Методи дослідження: порівняльний аналіз, 

математичне моделювання, елементи машинного навчання (ML), методи теорії прийняття 

рішень.  

  Основна частина. На базі класичної моделі комбінаторної інтеграції в зважених 

компонентів людського фактора пропонується динамічна модель врахування втоми від 

ECDIS (Predictive Fatigue Index, PFI), яка базується на трьох головних компонентах:  

– фізіологічний стан (F),  наприклад: сон, біоритми, тривалість чергування;  

– когнітивне навантаження (C), наприклад: кількість одночасних задач, складність 

маршруту, активність ECDIS (повідомлення, кількість дій);  

– операційний ризик (O), наприклад: погодні умови, трафік, небезпечні зони, час доби 

(нічні години). 

Відомий інтегральний індекс (дослідження втоми з урахуванням ECDIS):  
 

𝐹𝐼(𝑡) = 𝑤𝐹𝐹(𝑡)+𝑤𝐶𝐶(𝑡) + 𝑤𝑂𝑂(𝑡) , (1) 
 

де 𝐹𝐼(𝑡) – індекс втоми в момент часу t (0 - 1 або 0 - 100%); 

𝐹(𝑡) – фізіологічний стан (0 – повна свіжість, 1 – максимальна втома);  

𝐶(𝑡) – когнітивне навантаження (0 - 1); 
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𝑂(𝑡) – операційний ризик (0 - 1). 
 

𝐹(𝑡) = 1 −
𝑆(𝑡)

𝑆𝑜𝑝𝑡
𝑒𝛼𝑇𝑎𝑤𝑎𝑘𝑒(𝑡) , 

(2) 

 

де 𝑆(𝑡) – час сну за останні 24 години (години); 

𝑆𝑜𝑝𝑡 – оптимальний час сну (наприклад, 8 годин); 

𝑇𝑎𝑤𝑎𝑘𝑒(𝑡) – час безперервної активності (години);  

𝛼  – коефіцієнт накопичення втоми [0.01;0.1], підбирається експериментально. Тобто, втома 

зростає при недосипанні та тривалому безперервному чергуванні.  
 

𝐶(𝑡) = 𝛽1(𝑡)𝑁𝑡𝑎𝑠𝑘𝑠(𝑡)+𝛽2(𝑡)𝑁𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠(𝑡) + 𝛽3(𝑡)𝑁𝑟𝑜𝑢𝑡𝑒ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔(𝑡) , (3) 
 

де 𝑁𝑡𝑎𝑠𝑘𝑠(𝑡) – кількість одночасних задач (керування, зв’язок, моніторинг); 

𝑁𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠(𝑡) – кількість повідомлень ECDIS / RADAR / AIS & ARPA за одиницю часу; 

𝑁𝑟𝑜𝑢𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔(𝑡) – складність маршруту / маневрування (0 - 1);  

𝛽1(𝑡) + 𝛽2(𝑡) + 𝛽3(𝑡) = 1 – це функції вагових динамічних коефіцієнтів (залежні від 

контексту / втоми). 
 

𝑂(𝑡) = 𝛾1𝑊(𝑡)+𝛾2𝑉𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡) + 𝛾3𝑇𝑛𝑖𝑔ℎ𝑡(𝑡) , (4) 
 

де 𝑊(𝑡) – коефіцієнт складності погоди (0 - 1); 

𝑉𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡) – щільність руху суден (0 - 1);  

𝑇𝑛𝑖𝑔ℎ𝑡(𝑡) – часовий фактор (0 – день, 1 – ніч);  

𝛾1+𝛾2 + 𝛾3 = 1 – це вагові коефіцієнти.  

Модель дозволяє визначати порогові значення FI, наприклад: 

𝐹𝐼 < 0.3 → нормальна працездатність; 

0.3 ≤ 𝐹𝐼 < 0.6  → попередження (підвищена увага); 

0.6 ≤ 𝐹𝐼 < 0.8  → обмеження дій, автоматизація частини процесів; 

𝐹𝐼 > 0.8  → критичний рівень, рекомендується заміна вахтового офіцера / перерва (якщо два 

офіцери на вахті, можливий обмін функціями на деякий час). 

Для інтеграції з ECDIS система може адаптувати кількість підказок, підсвічування, 

зменшувати активність екранів (декілька, якщо безпаперова технологія), щоб знизити 

когнітивне навантаження. 

Для оцінки фізичного стану можна використовувати фізіологічні сенсори: інтеграція 

HRV, EEG, очні датчики для уточнення F(t). Надалі використовується ML-підхід: збір 

історичних даних FI(t) і подій / інцидентів для навчання моделі та оптимізації вагових 

коефіцієнтів.  

Для динамічного прогнозування рівня втоми на 1–3 години (∆𝑡) модель PFI з 

урахуванням (1)–(4): 

𝑃𝐹𝐼(𝑡0 + ∆𝑡) = 𝐹𝐼(𝑡0) + ∫ (𝑤𝐹𝐹(𝑡)+𝑤𝐶𝐶(𝑡) + 𝑤𝑂𝑂(𝑡))

𝑡0+∆𝑡

𝑡0

𝑑𝑡 + 𝜀𝑀𝐿(𝑡) , 

 

(5) 

 

де 𝜀𝑀𝐿(𝑡) – корекція на основі історичних даних оператора (ML-модель), що враховує 

індивідуальні патерни втоми, реакцій та помилок.  
 

𝜀𝑀𝐿(𝑡) = 𝜑(𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑜𝑟′𝑠_𝐻𝑖𝑠𝑡𝑜𝑟𝑦; 𝐸𝐶𝐷𝐼𝑆_𝐿𝑜𝑔𝐵𝑜𝑜𝑘; 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠) (6) 
 

Тобто 𝜀𝑀𝐿(𝑡) = 𝜑(𝑒1, 𝑒2, … , 𝑒𝑗 , історія даних, контекст), де еj – базова j-та складова 

похибки (фактор фізіологічних параметрів штурмана, навантаження на штурмана від ECDIS, 

погода тощо).   

Функція 𝜑 може бути реалізована через регресійну модель, нейромережу або 

градієнтний бустинг, навчена на записах LogBook періодів вахти конкретного OOW: як 

швидко він втомлюється при певних навантаженнях ECDIS; як реагує на повідомлення 
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ECDIS; які помилки траплялися при різних рівнях FI. Тобто навіть два оператори з 

однаковим графіком чергувань матимуть індивідуальні PFI, що робить підхід адаптивним. 

Модель  PFI дозволяє прогнозувати рівень втоми на горизонті Δt і видавати рекомендації до 

зміни вахт, ротації, автоматизації. Якщо значення PFI перевищує поріг PFIcrit, система може 

подати звуковий сигнал мастеру або запропонувати заміну / додаткового OOW навігаційного 

містка.  

Для розрахування динамічних коефіцієнтів когнітивного навантаження 

𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡) пропонується  модель, яка поєднує доменні правила й об’єктивну оцінку 

важливості з даних і вміє динамічно підлаштовуватись під конкретне судно / штурмана. Для 

цього до (3) додається I(t) – ручне керування. Динамічні коефіцієнти 𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡) 
розраховуються як комбінація апріорних (експертних) ваг і data-driven важливостей, які у 

свою чергу, є нормалізованими. Адаптивні ваги залежать від контексту (ніч/день, погода, 

персона штурман-OOW) і відразу дають інтерпретовану розбивку внеску кожного показника 

у загальне навантаження. 

  У момент часу t маємо m показників xj(t), j=1..m. Для простоти в прикладі m=3, тоді 

𝑥1 = 𝑁𝑡𝑎𝑠𝑘𝑠, 𝑥2 = 𝑁𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠, 𝑥3 = 𝑁𝑟𝑜𝑢𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔. 

Навчимо коротку модель M (LightGBM / RandomForest / Logistic regression) на наборі 

навчальних даних, де ціль – індикатор «suboptimal performance / near-miss / operator error» або 

безпосередньо «перепад у показниках уваги».   

Нехай 𝐼𝑗 – відносна важливість j-ої ознаки у моделі M. Нормалізація:  ∑ 𝐼𝑗
𝑚
𝑗=1 = 1. 

Введемо контекстні множники с𝑗(𝑡) (наприклад: ніч/день, погода, трафік). Для кожної 

ознаки маємо функцію підлаштування 𝑔𝑗(с𝑗(𝑡)) ∈ (0;+∞), яка збільшує вагу цієї ознаки у 

даному контексті. Наприклад, при ночі 𝑔𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠(𝑛𝑖𝑔ℎ𝑡) > 1, бо сигнали частіше 

провокують стрес; при простому маршруті 𝑔𝑟𝑜𝑢𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔(𝑙𝑜𝑤_𝑐𝑜𝑚𝑝𝑙𝑒𝑥) > 1. 

Коефіцієнти, як комбінація експерта, даних і контексту, можна отримати через 

розрахунок початкової ваги для кожної ознаки j: 
 

𝑢𝑗
0(𝑡) = (𝜇𝑒𝑗 + (1 − 𝜇)𝐼𝑗)𝑔𝑗 (с𝑗(𝑡)) , 

(7) 

 

де 𝜇 ∈ [0; 1] – параметр, що контролює вагу експертної складової проти data-driven (на 

практиці µ можна ставити близько до 0.2–0.5 на старті, потім підлаштувати). 

Нормалізація в підсумкові коефіцієнти:  
 

𝛽𝑗 =
𝑢𝑗
0(𝑡)

∑ 𝑢𝑘
0(𝑡)𝑚

𝑘=1

 . 
(8) 

 

Модель повинна працювати в двох режимах: операційному (протягом переходу) та 

стаціонарному (дослідження записів LogBook по вахтах). В операційному режимі: кожні τ 

хвилин збираються  𝑥𝑗(𝑡), 𝑐𝑗(𝑡)  і обчислюється  𝛽𝑗(𝑡); у стаціонарному (після завершення 

переходу) оновлюються 𝐼𝑗. Якщо накопичена достатня кількість сеансів, є можливість 

створити «тренування» і оновити параметри 𝜇. Для стабільності можна застосувати 

Exponential Moving Average (EMA) для ваг: 
 

𝛽𝑗
𝐸𝑀𝐴(𝑡) = 𝜌𝛽𝑗

𝐸𝑀𝐴(𝑡 − 𝜏) + (1 − 𝜌)𝛽𝑗(𝑡) , (9) 
 

де при 𝜌 ≈ 0.9 буде збережено плавність змін. 

Загальний алгоритм операційного використання: 

1. Зібрати реальні дані фізіології, когнітивного навантаження та операційні фактори. 

2. Нормалізувати та обчислити компонентні функції FI. 

3. Використати ML-функцію  𝜀𝑀𝐿(𝑡) для індивідуальної корекції. 

4. Обчислити PFI(t+Δt) для прогнозного горизонту. 

5. Порівняти PFI з порогами і визначити заходи: попередження, часткова або повна 

автоматизація, ротація, виклик додаткового OOW на місток. 
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6. Повторювати цикл кожну годину / 30 хвилин, оновлюючи дані і прогноз. 

Результати й аналіз використання. Індивідуалізація під конкретного судноводія 

забезпечується наявністю функції 𝜀𝑀𝐿, що дозволяє враховувати індивідуальні патерни 

втоми та реакцій на навантаження. Прогноз втоми можна робити динамічним на 1–3 години, 

інтегруючи фізіологію, когнітивні параметри, операційні фактори та індивідуальність 

штурмана, що дозволяє приймати превентивні рішення: адаптація до ECDIS, ротація 

вахтових / виклик додаткового OOW, часткова автоматизація. Якщо розглядати можливість 

використання не закритих систем ECDIS (програмно), то PFI не лише вимірює рівень втоми, 

а й дозволяє системі адаптувати систему ECDIS (налаштування яскравості екрана, видимість 

попереджень, підсвічування) відповідно до стану оператора. 

Найбільші відмінності з існуючими моделями досягаються використанням саме 

динамічних коефіцієнтів (для прикладу у моделі показані для когнітивних параметрів) і 

поєднання: інтерфейс + навігація + фізіологія.  
 

Таблиця 2 – Порівняння спроможностей моделей 

Модель / Підхід Опис 
Типові вхідні 

дані 

Обмеження 

існуючих підходів 

Можливості 

запропонованої 

моделі PFI 

HFACS  

Класифікація 

помилок 

оператора по 

рівнях ієрархії 

Аварійні 

звіти, людські 

помилки 

Пост-фактум ана-

ліз, не дає число-

вої оцінки, не 

використовується 

у реальному часі 

Модель надає 

математичний fatigue-

rating у реальному 

часі, а не після аварії 

SART / NASA-

TLX 

Суб'єктивна 

оцінка 

навантаження 

Анкети, 

самооцінка 

Не працюють під 

час вахти, 

неможливо 

автоматизувати 

без оператора 

Збір даних 

навантаження 

автоматично через 

ECDIS logBook + 

біосенсори 

SAFTE, Three-

Process Model  

Моделі 

накопичення 

втоми на основі 

сну та ритмів 

Сон, 

циркадіанні 

цикли 

Не враховують 

ситуаційне наван-

таження, стрес, 

когнітивні задачі 

Додається фактор 

когнітивної ваги 

ECDIS-рішень 

Markov / Bayesian 

Operator Error 

Models 

Ймовірність 

помилки 

Стани 

системи, 

помилки 

Математичні, але 

не враховують пси-

хофізику людини 

Вводиться фізіологія і 

адаптивне 

перенавчання 

Machine-

Learning Fatigue 

Detection 

(EEG/HRV) 

Аналіз стану 

мозку / нервової 

системи 

EEG, HRV, 

камери 

Не інтегрується із 

профілем 

завдання 

оператора 

Напряму пов'язується 

когнітивне 

навантаження із 

операціями в ECDIS 

Теоретично можна порівняти загалом моделі за критеріями: реальний час, особистісна 

(персоніфікована) адаптація, врахування впливу ECDIS, застосування у навігації, прогноз 

аварійності.  

Таблиця 3 – Загальне порівняння моделей 

Критерій Існуючі моделі Запропонована модель 

Реальний час 
Здебільше offline та 

аналітика аварій 

Безперервний обчислювальний показник + live-

оцінка когнітивного навантаження 

Особистісна адаптація Відсутня або ручна 
ML-адаптивний коефіцієнт + персоналізація + 

аналіз історичних даних LogBook 

Врахування ECDIS-

поведінки 
Майже відсутнє 

Частково (через навички і реакції) + повна 

інтеграція дій + повідомлення ECDIS 

Застосування у 

навігації 
Обмежене Цільова модель під судноводія 

Прогноз аварійності Низький Високий через 3-осьову оцінку 
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Висновки. Запропонована модель динамічного визначення рівня втоми PFI працює як 

єдиний  комплекс, який в цілому є інтегрованою моделлю оцінки ризику людської помилки у 

навігації на рівні оператора ECDIS у реальному часі. Динаміка визначення коефіцієнтів  

когнітивного навантаження дозволяє попереджати / запобігати перевтомі OOW 

навігаційного містка, оптимальним чином, з точки зору безпеки, планувати розклад вахт, 

орієнтуючись саме на особистісні дані офіцерів навігаційного містка. 

Перспективи подальших досліджень. З метою підвищення точності моделювання є 

сенс у подальших дослідженнях систем самонавчання, які коригують ваги факторів у 

реальному часі залежно від поведінки судноводія та змінних умов навігації. Також 

перспективними напрямками можуть стати: розробка точніших моделей контекстних 

коефіцієнтів  для різних сценаріїв: ніч/день, погода, трафік, складність маршруту і 

дослідження взаємодії між контекстними та фізіологічними факторами для підвищення 

достовірності результатів моделювання. Надалі, можна розробити програмний модуль Crew-

Assist, який може функціонувати як система контролю за рівнем втоми штурмана-OOW і 

надавати поради задля запобігання перевтоми. 
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Petrovskyi A. DYNAMIC MODEL FOR CALCULATING NAVIGATOR FATIGUE LEVEL – 

PREDICTIVE FATIGUE INDEX 

The research addresses the challenges of assessing the human factor in maritime navigation, with a particular 

focus on the fatigue and cognitive workload of ship navigators during the operation of Electronic Chart 

Display and Information Systems (ECDIS). The study provides a comprehensive review and critical analysis of 

current approaches and mathematical models, including NASA-TLX, SWAT, HFACS, and SAFTE, highlighting 

their strengths and limitations in predicting operator errors and identifying high-risk situations. A new 

integrative indicator is proposed: the Psychophysical Fatigue Index (PFI), which quantitatively assesses 

physiological fatigue while taking into account cognitive load arising from physiological, operational, and 

contextual factors. The model introduces dynamic adjustment of weighting coefficients using machine learning 

techniques, allowing for adaptive, individual-specific calibration. Contextual parameters such as weather 

conditions, traffic density, time of day, and complexity of the navigation route are integrated into the model to 

enhance predictive accuracy. PFI operates in two modes—operational and stationary—providing both real-

time monitoring and baseline assessments of the navigator’s state. In addition, the research presents a 

multidimensional metric that evaluates cognitive workload by integrating physiological signals, operational 

tasks, and contextual influences to provide a holistic assessment of navigator performance. The proposed 

models can be implemented in navigation bridge systems and training simulators for the early detection of 

elevated fatigue levels and cognitive overload, thereby contributing to risk reduction and improved maritime 

safety. A comparative analysis of existing models and the proposed integrative approach demonstrates 

improved accuracy in error risk prediction, optimized watch scheduling, and enhanced decision support. 

Prospects for future research include further development of adaptive machine learning algorithms for 

individualized assessments, integration of multidimensional real-time data, and validation through operational 

and simulator-based studies, aiming for a comprehensive evaluation of the navigator’s physical and cognitive 

state under varying operational conditions. 

Key words: ECDIS; human factor; human fatigue; Predictive Fatigue Index; Exponential Moving Average. 
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